

Olympiade Francophone de Mathématiques – Édition 2020

ÉPREUVE SENIOR

Chaque problème est noté sur 7 points Les problèmes ne sont pas classés par ordre de difficulté

Problème 1

Soit ABC un triangle dont tous les angles sont aigus, et tel que AB < AC. On note D, E et F les points de contact respectifs du cercle inscrit au triangle ABC avec les segments [BC], [CA] et [AB]. Soit G le point de la droite (AB) tel que les droites (DG) et (EF) sont perpendiculaires. Enfin, soit X le point d'intersection, autre que A, entre les cercles circonscrits aux triangles ABC et AEF.

Démontrer que les points B, D, G et X appartiennent à un même cercle.

Problème 2

Soit a_1, a_2, \ldots, a_n une suite finie d'entiers naturels. Ses sous-suites sont les suites de la forme $a_i, a_{i+1}, \ldots, a_j$ telles que $1 \le i \le j \le n$. Deux sous-suites sont égales si elles ont la même longueur et sont formées des mêmes termes; autrement dit, les sous-suites $a_i, a_{i+1}, \ldots, a_j$ et $a_u, a_{u+1}, \ldots, a_v$ sont considérées comme égales si et seulement si j-i=v-u et $a_{i+k}=a_{u+k}$ pour tout entier k tel que $0 \le k \le j-i$. Enfin, on dit qu'une sous-suite $a_i, a_{i+1}, \ldots, a_j$ est palindromique si elle se lit de la même façon dans les deux sens, c'est-à-dire si $a_{i+k}=a_{j-k}$ pour tout entier k tel que $0 \le k \le j-i$.

Quel est le plus grand nombre de sous-suites palindromiques distinctes que peut contenir une telle suite de longueur n?

Problème 3

On définit une suite de réels a_1, a_2, a_3, \ldots par $a_1 = 3/2$, puis

$$a_{n+1} = 1 + \frac{n}{a_n}$$

pour tout entier $n \ge 1$.

Trouver un entier $k \geqslant 1$ tel que $2020 \leqslant a_k < 2021$.

Problème 4

On note $\mathbb{N}_{\geqslant 1}$ l'ensemble des entiers supérieurs ou égaux à 1. Soit a_1, a_2, a_3, \ldots une suite d'éléments de $\mathbb{N}_{\geqslant 1}$, et soit m un entier. On suppose que, pour tout sous-ensemble S fini et non vide de $\mathbb{N}_{\geqslant 1}$, le nombre

$$-1 + \prod_{k \in S} a_k$$

est un nombre premier.

Démontrer que, parmi les entiers a_1, a_2, a_3, \ldots , seul un nombre fini compte moins de m facteurs premiers distincts.

Remarque : la notation $\prod_{k \in S} a_k$ désigne le produit de tous les entiers a_k pour lesquels $k \in S$.

Durée de l'épreuve : 4 heures et demie